If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+33t+8=0
a = -16; b = 33; c = +8;
Δ = b2-4ac
Δ = 332-4·(-16)·8
Δ = 1601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1601}}{2*-16}=\frac{-33-\sqrt{1601}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1601}}{2*-16}=\frac{-33+\sqrt{1601}}{-32} $
| 2y+3=0.36 | | x÷5-9=-16 | | ¼x=6+⅓x | | –10−8h=–9h | | 4-(3x-1)=2(x+5) | | 0.2k-3=0.6k+3 | | 2/5x-3/2x=11/7 | | 3a+39=87 | | 7x+4=-(-7x-3) | | y−84=15 | | 5x^2+8x-10=11x-6 | | 8y-4+28+132=180 | | 9^x-9=10*3^x | | 9^x-9=10x3^x | | –15=2s+1 | | 4,5x=135 | | r=48r=2 | | 9x+21+88=44 | | s+26=79 | | r3− –10=13 | | -0.92=x-0.3/10 | | -6+3(2x+4)=18 | | g+21=98 | | 1/8x-3=1 | | 3x+12+39=108 | | |3r+5|=4r | | 1.5y+2.7=4.5 | | (8x+8)=(3x+7) | | 4x+1+41=41 | | –8z+8=–6z | | 2(r+4)=8 | | -9p-1=71 |